Skip to main content
Version: 1.0.6

PandasDBFSDatasource

class great_expectations.datasource.fluent.PandasDBFSDatasource(*, type: Literal['pandas_dbfs'] = 'pandas_dbfs', name: str, id: Optional[uuid.UUID] = None, assets: List[great_expectations.datasource.fluent.data_asset.path.file_asset.FileDataAsset] = [], base_directory: pathlib.Path, data_context_root_directory: Optional[pathlib.Path] = None)#

Pandas based Datasource for DataBricks File System (DBFS) based data assets.

add_csv_asset(name: str, *, id: <pydantic.v1.fields.DeferredType object at 0x7fe24520f9a0> = None, order_by: <pydantic.v1.fields.DeferredType object at 0x7fe24520fa60> = None, batch_metadata: <pydantic.v1.fields.DeferredType object at 0x7fe24520fbb0> = None, batch_definitions: <pydantic.v1.fields.DeferredType object at 0x7fe24520fd30> = None, connect_options: <pydantic.v1.fields.DeferredType object at 0x7fe24520fe50> = None, sep: typing.Optional[str] = None, delimiter: typing.Optional[str] = None, header: Union[int, Sequence[int], None, Literal['infer']] = 'infer', names: Union[Sequence[str], None] = None, index_col: Union[IndexLabel, Literal[False], None] = None, usecols: typing.Optional[typing.Union[int, str, typing.Sequence[int]]] = None, dtype: typing.Optional[dict] = None, engine: Union[CSVEngine, None] = None, converters: typing.Any = None, true_values: typing.Any = None, false_values: typing.Any = None, skipinitialspace: bool = False, skiprows: typing.Optional[typing.Union[typing.Sequence[int], int]] = None, skipfooter: int = 0, nrows: typing.Optional[int] = None, na_values: typing.Any = None, keep_default_na: bool = True, na_filter: bool = True, verbose: bool = False, skip_blank_lines: bool = True, parse_dates: Union[bool, Sequence[str], None] = None, infer_datetime_format: bool = None, keep_date_col: bool = False, date_parser: typing.Any = None, date_format: typing.Optional[str] = None, dayfirst: bool = False, cache_dates: bool = True, iterator: bool = False, chunksize: typing.Optional[int] = None, compression: CompressionOptions = 'infer', thousands: typing.Optional[str] = None, decimal: str = '.', lineterminator: typing.Optional[str] = None, quotechar: str = '"', quoting: int = 0, doublequote: bool = True, escapechar: typing.Optional[str] = None, comment: typing.Optional[str] = None, encoding: typing.Optional[str] = None, encoding_errors: typing.Optional[str] = 'strict', dialect: typing.Optional[str] = None, on_bad_lines: str = 'error', delim_whitespace: bool = False, low_memory: typing.Any = True, memory_map: bool = False, float_precision: Union[Literal[('high', 'legacy')], None] = None, storage_options: StorageOptions = None, dtype_backend: DtypeBackend = None, **extra_data: typing.Any) pydantic.BaseModel#
add_excel_asset(name: str, *, id: <pydantic.v1.fields.DeferredType object at 0x7fe245180280> = None, order_by: <pydantic.v1.fields.DeferredType object at 0x7fe245180340> = None, batch_metadata: <pydantic.v1.fields.DeferredType object at 0x7fe245180460> = None, batch_definitions: <pydantic.v1.fields.DeferredType object at 0x7fe2451805e0> = None, connect_options: <pydantic.v1.fields.DeferredType object at 0x7fe245180730> = None, sheet_name: typing.Optional[typing.Union[str, int, typing.List[typing.Union[int, str]]]] = 0, header: Union[int, Sequence[int], None] = 0, names: typing.Optional[typing.List[str]] = None, index_col: Union[int, Sequence[int], None] = None, usecols: typing.Optional[typing.Union[int, str, typing.Sequence[int]]] = None, dtype: typing.Optional[dict] = None, engine: Union[Literal[('xlrd', 'openpyxl', 'odf', 'pyxlsb')], None] = None, true_values: Union[Iterable[str], None] = None, false_values: Union[Iterable[str], None] = None, skiprows: typing.Optional[typing.Union[typing.Sequence[int], int]] = None, nrows: typing.Optional[int] = None, na_values: typing.Any = None, keep_default_na: bool = True, na_filter: bool = True, verbose: bool = False, parse_dates: typing.Union[typing.List, typing.Dict, bool] = False, date_format: typing.Optional[str] = None, thousands: typing.Optional[str] = None, decimal: str = '.', comment: typing.Optional[str] = None, skipfooter: int = 0, storage_options: StorageOptions = None, dtype_backend: DtypeBackend = None, **extra_data: typing.Any) pydantic.BaseModel#
add_feather_asset(name: str, *, id: <pydantic.v1.fields.DeferredType object at 0x7fe245192400> = None, order_by: <pydantic.v1.fields.DeferredType object at 0x7fe2451924c0> = None, batch_metadata: <pydantic.v1.fields.DeferredType object at 0x7fe2451925e0> = None, batch_definitions: <pydantic.v1.fields.DeferredType object at 0x7fe245192760> = None, connect_options: <pydantic.v1.fields.DeferredType object at 0x7fe2451928b0> = None, columns: Union[Sequence[str], None] = None, use_threads: bool = True, storage_options: StorageOptions = None, dtype_backend: DtypeBackend = None, **extra_data: typing.Any) pydantic.BaseModel#
add_fwf_asset(name: str, *, id: <pydantic.v1.fields.DeferredType object at 0x7fe245192fd0> = None, order_by: <pydantic.v1.fields.DeferredType object at 0x7fe24529e0a0> = None, batch_metadata: <pydantic.v1.fields.DeferredType object at 0x7fe24529e1c0> = None, batch_definitions: <pydantic.v1.fields.DeferredType object at 0x7fe24529e340> = None, connect_options: <pydantic.v1.fields.DeferredType object at 0x7fe24529e490> = None, colspecs: Union[Sequence[Tuple[int, int]], str, None] = 'infer', widths: Union[Sequence[int], None] = None, infer_nrows: int = 100, dtype_backend: DtypeBackend = None, kwargs: typing.Optional[dict] = None, **extra_data: typing.Any) pydantic.BaseModel#

add_hdf_asset(name: str, *, id: <pydantic.v1.fields.DeferredType object at 0x7fe24529ed60> = None, order_by: <pydantic.v1.fields.DeferredType object at 0x7fe24529ee20> = None, batch_metadata: <pydantic.v1.fields.DeferredType object at 0x7fe24529e8e0> = None, batch_definitions: <pydantic.v1.fields.DeferredType object at 0x7fe245192c10> = None, connect_options: <pydantic.v1.fields.DeferredType object at 0x7fe2452aa0d0> = None, key: typing.Any = None, mode: str = 'r', errors: str = 'strict', where: typing.Optional[typing.Union[str, typing.List]] = None, start: typing.Optional[int] = None, stop: typing.Optional[int] = None, columns: typing.Optional[typing.List[str]] = None, iterator: bool = False, chunksize: typing.Optional[int] = None, kwargs: typing.Optional[dict] = None, **extra_data: typing.Any) pydantic.BaseModel#

add_html_asset(name: str, *, id: <pydantic.v1.fields.DeferredType object at 0x7fe2452aa850> = None, order_by: <pydantic.v1.fields.DeferredType object at 0x7fe2452aa910> = None, batch_metadata: <pydantic.v1.fields.DeferredType object at 0x7fe2452aaa30> = None, batch_definitions: <pydantic.v1.fields.DeferredType object at 0x7fe2452aab80> = None, connect_options: <pydantic.v1.fields.DeferredType object at 0x7fe2452aacd0> = None, match: Union[str, Pattern] = '.+', flavor: typing.Optional[str] = None, header: Union[int, Sequence[int], None] = None, index_col: Union[int, Sequence[int], None] = None, skiprows: typing.Optional[typing.Union[typing.Sequence[int], int]] = None, attrs: typing.Optional[typing.Dict[str, str]] = None, parse_dates: bool = False, thousands: typing.Optional[str] = ',', encoding: typing.Optional[str] = None, decimal: str = '.', converters: typing.Optional[typing.Dict] = None, na_values: Union[Iterable[object], None] = None, keep_default_na: bool = True, displayed_only: bool = True, extract_links: Literal[(None, 'header', 'footer', 'body', 'all')] = None, dtype_backend: DtypeBackend = None, **extra_data: typing.Any) pydantic.BaseModel#

add_json_asset(name: str, *, id: <pydantic.v1.fields.DeferredType object at 0x7fe2452b77c0> = None, order_by: <pydantic.v1.fields.DeferredType object at 0x7fe2452b7880> = None, batch_metadata: <pydantic.v1.fields.DeferredType object at 0x7fe2452b79a0> = None, batch_definitions: <pydantic.v1.fields.DeferredType object at 0x7fe2452b7af0> = None, connect_options: <pydantic.v1.fields.DeferredType object at 0x7fe2452b7c40> = None, orient: typing.Optional[str] = None, typ: Literal[('frame', 'series')] = 'frame', dtype: typing.Optional[dict] = None, convert_axes: typing.Any = None, convert_dates: typing.Union[bool, typing.List[str]] = True, keep_default_dates: bool = True, precise_float: bool = False, date_unit: typing.Optional[str] = None, encoding: typing.Optional[str] = None, encoding_errors: typing.Optional[str] = 'strict', lines: bool = False, chunksize: typing.Optional[int] = None, compression: CompressionOptions = 'infer', nrows: typing.Optional[int] = None, storage_options: StorageOptions = None, dtype_backend: DtypeBackend = None, **extra_data: typing.Any) pydantic.BaseModel#

add_orc_asset(name: str, *, id: <pydantic.v1.fields.DeferredType object at 0x7fe2452c6730> = None, order_by: <pydantic.v1.fields.DeferredType object at 0x7fe2452c67f0> = None, batch_metadata: <pydantic.v1.fields.DeferredType object at 0x7fe2452c6910> = None, batch_definitions: <pydantic.v1.fields.DeferredType object at 0x7fe2452c6a90> = None, connect_options: <pydantic.v1.fields.DeferredType object at 0x7fe2452c6be0> = None, columns: typing.Optional[typing.List[str]] = None, dtype_backend: DtypeBackend = None, kwargs: typing.Optional[dict] = None, **extra_data: typing.Any) pydantic.BaseModel#

add_parquet_asset(name: str, *, id: <pydantic.v1.fields.DeferredType object at 0x7fe2452d4280> = None, order_by: <pydantic.v1.fields.DeferredType object at 0x7fe2452d4340> = None, batch_metadata: <pydantic.v1.fields.DeferredType object at 0x7fe2452d4460> = None, batch_definitions: <pydantic.v1.fields.DeferredType object at 0x7fe2452d45e0> = None, connect_options: <pydantic.v1.fields.DeferredType object at 0x7fe2452d4730> = None, engine: str = 'auto', columns: typing.Optional[typing.List[str]] = None, storage_options: StorageOptions = None, use_nullable_dtypes: bool = None, dtype_backend: DtypeBackend = None, kwargs: typing.Optional[dict] = None, **extra_data: typing.Any) pydantic.BaseModel#

add_pickle_asset(name: str, *, id: <pydantic.v1.fields.DeferredType object at 0x7fe2452d4ee0> = None, order_by: <pydantic.v1.fields.DeferredType object at 0x7fe2452d4fa0> = None, batch_metadata: <pydantic.v1.fields.DeferredType object at 0x7fe24525c0d0> = None, batch_definitions: <pydantic.v1.fields.DeferredType object at 0x7fe24525c250> = None, connect_options: <pydantic.v1.fields.DeferredType object at 0x7fe24525c3a0> = None, compression: CompressionOptions = 'infer', storage_options: StorageOptions = None, **extra_data: typing.Any) pydantic.BaseModel#

add_sas_asset(name: str, *, id: <pydantic.v1.fields.DeferredType object at 0x7fe24525ca30> = None, order_by: <pydantic.v1.fields.DeferredType object at 0x7fe24525caf0> = None, batch_metadata: <pydantic.v1.fields.DeferredType object at 0x7fe24525cc10> = None, batch_definitions: <pydantic.v1.fields.DeferredType object at 0x7fe24525cd90> = None, connect_options: <pydantic.v1.fields.DeferredType object at 0x7fe24525cee0> = None, format: typing.Optional[str] = None, index: typing.Optional[str] = None, encoding: typing.Optional[str] = None, chunksize: typing.Optional[int] = None, iterator: bool = False, compression: CompressionOptions = 'infer', **extra_data: typing.Any) pydantic.BaseModel#

add_spss_asset(name: str, *, id: <pydantic.v1.fields.DeferredType object at 0x7fe2452676a0> = None, order_by: <pydantic.v1.fields.DeferredType object at 0x7fe245267760> = None, batch_metadata: <pydantic.v1.fields.DeferredType object at 0x7fe245267880> = None, batch_definitions: <pydantic.v1.fields.DeferredType object at 0x7fe245267a00> = None, connect_options: <pydantic.v1.fields.DeferredType object at 0x7fe245267b50> = None, usecols: typing.Optional[typing.Union[int, str, typing.Sequence[int]]] = None, convert_categoricals: bool = True, dtype_backend: DtypeBackend = None, **extra_data: typing.Any) pydantic.BaseModel#

add_stata_asset(name: str, *, id: <pydantic.v1.fields.DeferredType object at 0x7fe245271280> = None, order_by: <pydantic.v1.fields.DeferredType object at 0x7fe245271340> = None, batch_metadata: <pydantic.v1.fields.DeferredType object at 0x7fe245271460> = None, batch_definitions: <pydantic.v1.fields.DeferredType object at 0x7fe2452715e0> = None, connect_options: <pydantic.v1.fields.DeferredType object at 0x7fe245271730> = None, convert_dates: bool = True, convert_categoricals: bool = True, index_col: typing.Optional[str] = None, convert_missing: bool = False, preserve_dtypes: bool = True, columns: Union[Sequence[str], None] = None, order_categoricals: bool = True, chunksize: typing.Optional[int] = None, iterator: bool = False, compression: CompressionOptions = 'infer', storage_options: StorageOptions = None, **extra_data: typing.Any) pydantic.BaseModel#
add_xml_asset(name: str, *, id: <pydantic.v1.fields.DeferredType object at 0x7fe245271fd0> = None, order_by: <pydantic.v1.fields.DeferredType object at 0x7fe2452800a0> = None, batch_metadata: <pydantic.v1.fields.DeferredType object at 0x7fe2452801c0> = None, batch_definitions: <pydantic.v1.fields.DeferredType object at 0x7fe245280340> = None, connect_options: <pydantic.v1.fields.DeferredType object at 0x7fe245280490> = None, xpath: str = './*', namespaces: typing.Optional[typing.Dict[str, str]] = None, elems_only: bool = False, attrs_only: bool = False, names: Union[Sequence[str], None] = None, dtype: typing.Optional[dict] = None, encoding: typing.Optional[str] = 'utf-8', stylesheet: Union[FilePath, None] = None, iterparse: typing.Optional[typing.Dict[str, typing.List[str]]] = None, compression: CompressionOptions = 'infer', storage_options: StorageOptions = None, dtype_backend: DtypeBackend = None, **extra_data: typing.Any) pydantic.BaseModel#